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Multistability analysis of phase locking patterns in an excitatory coupled neural system
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Taejon 305-350, Korea
~Received 16 March 1999!

We quantitatively analyze the multistability of dynamic patterns of a bursting neural system with diffusive
coupling. Through effective coupling analysis, we show that the system is not in-phase locking but exhibits
various phase locking patterns, each of which corresponds to the stable fixed points of the effective coupling.
The simulation proves the validity of the effective coupling method in analyzing the multistability of neural
systems which presents complicated dynamic patterns such as bursting.@S1063-651X~99!13008-3#

PACS number~s!: 87.10.1e, 05.45.Xt, 07.05.Mh
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I. INTRODUCTION

Multistability has been introduced to provide mechanis
for information processing in biological neural systems.
the perception of ambiguous or reversible figures, it has b
proposed that different interpretations of a figure corresp
to switching among dynamic patterns with different colle
tive frequencies in a switching time course@1#. The multista-
bility of dynamic patterns can also be used to explain activ
changes of theoretical neural systems occurring due to
transient input changes This corresponds to a param
independent mode-switching mechanism with fixed para
eter values, which is distinguished from a paramet
dependent mechanism based on changing parameter v
such as synaptic coupling@2#.

Various parameters or concepts such as time delay@1#,
stochastic resonance@3#, etc., based on physiology have be
introduced to explain the multistability in neural systems.
quantitative analysis of multistable dynamic patterns, ho
ever, remains the focus of research. In this paper we s
that various phase locking patterns coexist in a neural sys
with diffusive coupling. In other words, the system is ul
mately stabilized in one of those phase locking patterns.
analyze multistable phase locking patterns using the effec
coupling method@4,5#. In Ref. @5#, the same method wa
applied to the Hodgkin-Huxley neuron model with synap
coupling to find the multistability at the weak coupling r
gime. We focus on limit cycle oscillators with diffusive cou
pling which model the electrical activities of gap junction
neural system@6#.

It has been recently shown that diffusive coupling m
induce dephasing of limit cycle oscillators@7,8#. Using ef-
fective coupling analysis for the weak coupling case,
show that at some parameter values the system is ou
phase, and even exhibits multistable out-of-phase lock
dynamic patterns. We choose a limit cycle oscillator syst
which presents not only the firing behavior of neurons
sequences of bursts@8–12# to show the wide applicability of
the effective coupling method. The multistability analysis
bursting neural systems has not yet been tried, to our kno
edge. For fixed parameter values, we find all of the dyna
patterns, each of which corresponds to one of the fixed po
of the asymmetric part of the effective coupling. By chan
ing the initial conditions, which corresponds to changing
PRE 601063-651X/99/60~2!/2177~5!/$15.00
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transient inputs, the system is switched from a locking mo
to another with fixed parameters. In Sec. II, the one-neu
system is explained. The effective coupling method is
plained in Sec. III. The results of this paper are presente
Sec. IV, where the dephasing of the system is explained w
the phase shift plot and the multistable phase locking p
terns corresponding to the stable fixed points of the effec
coupling are explicitly presented. The summary and disc
sions are contained in Sec. V.

II. A BURSTING NEURONAL MODEL

In this paper we study a system of Hindmarsh-Rose~HR!
neurons@9,10#. Even though this model is not based o

FIG. 1. ~a! Time evolution of the membrane voltageX, ~b! 3 ~X,
Y, Z!-dimensional contour plot of Eq.~1!.
2177 © 1999 The American Physical Society
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physiology, it simulates some features observed in neuro
bursting. The HR model was originally introduced to give
long interspike interval and burst typical of real neurons. T
three-variable HR model is given by

dX

dt
5Y2aX31bX22Z1I ,

dY

dt
5c2dX22Y,

dZ

dt
5r @s~X2a!2Z#. ~1!

X is thought of as the membrane voltage of the neuronY
as the recovery variable, andZ as a slow adaptation curren
I is the uniform external current.a is the membrane voltag
when the neuron is at a stable fixed point of the null clin
dX/dt 50 anddY/dt 50 for I 50. We will fix the param-
eters to the valuesa51.0, b53.0, c51.0, d55.0, s54.0,
r 50.003, andI 52.7.

A bursting time course for a single neuron is shown
Fig. 1~a! for one period of bursting. The bursting mechanis
in the mathematical neuronal systems was extensively s
ied in Refs.@9,11#. We refer to Ref.@9# for a detailed burst-
ing mechanism of the HR model. A brief explanation on t
bursting mechanism of HR model is as follows. As in F
1~a!, each burst contains six spikes followed by a quiesc
state. The spikes are generated when the neuron is on
limit cycle which surrounds an unstable fixed point. As c
be seen in Fig. 1~a!, the spike interval becomes longer in
burst as the limit cycle trajectory draws closer to the sad
point separatrix, and eventually a saddle-loop bifurcation
curs. Then the firing ceases and the neuron stays at the s
fixed point until a stable limit cycle appears through a h
moclinic connection so that another burst starts. The th
dimensional~X, Y, andZ! contour plot is shown in Fig. 1~b!.

The bursting oscillation originates from the evolution
the slow variableZ which switches the dynamics of the sy
tem between the steady state and the oscillatory state on
limit cycle by changing the geometry of the stable fix
point, the saddle point, and the unstable fixed point. T

FIG. 2. Phase shiftZP vs f ~units in p) for c50.01p.
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parameterr determines the bursting duration and the num
of spikes in one burst. For smaller values ofr, the slow
variable Z leads to a longer period of bursting with mo
spikes. According to the detailed role of the slow and f
variables, a classification scheme for the bursting oscillat
was proposed by Bertramet al. @12#.

III. EFFECTIVE COUPLING METHOD

We now introduce the effective coupling method to t
electrically coupled HR model which is described by Eq.~1!
with an additional coupling term, which is given by

dXi

dt
5Yi2aXi

31bXi
22Zi1I 2K~Xi2Xj !,

dYi

dt
5c2dXi

22Yi , ~2!

dZi

dt
5r @s~Xi2a!2Zi #,

wherei , j 51,2, andK denotes the coupling strength.
In order to describe the phase dynamics of the coupli

we calculate the effective interactions. Assuming the we
coupling, the system may be approximated as a phase m
@4#, where the phasef of a limit cycle oscillator is defined as
df(V)/dt51 andV5(X,Y,Z) in this paper.

For the limit cycle without perturbation,

df

dt
5

df

dV

dV

dt
51. ~3!

When there is a small perturbationP(V),

df

dt
511gra dVfP~V!. ~4!

FIG. 3. The antisymmetric part of the effective coupling no
malized by the coupling strength vs the phase difference~units in
p). U1 –U6 are unstable fixed points, andS1 –S6 are stable fixed
points. The locations ofS1 –S6 are atc50.017p, 0.23p, 0.39p,
0.52p, 0.64p, and 0.75p, respectively.
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Then the small coupling in Eq.~2! gives

df i

dt
511gra dXj

f j P~Xi ,Xj !, ~5!

whereP(Xi ,Xj ) is the coupling term in Eq.~2!.
The effective couplingG(c) is then defined as

dc

dt
5G~c!5

1

2pE0

2p

df Z~f!P~f,c!, ~6!
wherec is the difference between the phase of the two n
rons, f i2f j , and ZP is the phase shift defined a
Z(f)P(f,c)5(gra dVf)V5V0(f)P(f,c), whereV0 is the
point on the limit cycle at phasef. Here we adapted the
extended notion of phase using the concept of isochr
which are defined as a subset of domain converging t
point on the limit cycle.P(f,c)5P„V0(f),V0(f1c)… de-
scribes the rate of change of the state vectorV of an oscilla-
tor due to the interaction with the other at phase differen
c. P(f,c) is the coupling term in Eq.~2! expressed as a
function of the phases, which is considered a small pertur
FIG. 4. ~a!–~f! Phase locking patterns of Eq.~2! whenK50.001. The membrane voltagesX1 andX2 are plotted vsf ~units inp). Each
pattern corresponds to one of the stable fixed points,S1 –S6 in Fig. 3. which is equal to (2p/T) t, whereT and t are the duration of one
period of bursting and time, respectively.
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tion. The sensitivity function Z(f)5(gra dVf)V5V0(f)

gives the change of phase along the limit cycle caused by
change ofV: we choose a pointV0 on the limit cycle andV
not on the limit cycle but close toV0 , then measure the
difference between the two phases corresponding toV0 and
V. The difference in the phase divided byuV2V0u is the
sensitivity function.

IV. MULTISTABILITY ANALYSIS

First we show that Eq.~2! is not in-phase locking in spite
of the excitatory coupling through the effective couplin
analysis. We plot the phase shiftZP with c50.01p in Fig. 2.
During a period of bursting, the interaction causes the ph
differencec to increase~a positive value ofZP! or decrease
~a negative value ofZP!. One observes that each spike in
burst in Fig. 1~a! corresponds to one of the six ‘‘bursts’’ i
Fig. 2. This means that the coupling influences the ph
difference mainly when the oscillator is on the limit cycl
Otherwise, the phase shift is almost zero, i.e., the coup
has little influence on the phase difference of the sys
when the oscillator is at the steady state. AveragingZP over
one period of bursting, as shown in Eq.~6!, one obtains the
positive value of the slope at the origin of the antisymme
part of the effective coupling, i.e.,G8(0), as can beseen in
Fig. 3. This shows that the diffusive coupling of Eq.~2! leads
to a dephasing of the system. This unexpected depha
originates from the deformation of the phase flow, i.e.,
difference in phase velocity across the limit cycle. Th
dephasing mechanism was explained in detail in Ref.@8#.

Now we investigate the multistability in phase lockin
patterns. To this end, we consider the asymmetric part of
effective coupling, and therefore only the positive part of t
phase difference. In Fig. 3, we plot the antisymmetric par
the effective coupling normalized by the coupling value. T
zero of the antisymmetric part of the effective coupling w
negative value of the slope in Fig. 3,S1,S2, . . . ,S6, corre-
spond to the stable fixed points, and the ones with posi
slope value,U1,U2, . . . ,U6, correspond to the unstab

FIG. 5. Simulation plot ofdc/dt vs c ~in units ofp), which is
the phase difference between the two neurons after the 20 pe
of bursts divided by the time duration. The phase difference
normalized by the coupling. The solid line is for theK50.001 case,
and the broken line is forK50.0001.
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points. The system is eventually stabilized in one of t
stable fixed points according to the initial conditions.
other words, the system is eventually phase locked with
phase difference given by the corresponding stable fi
point. The reasoning for this is as follows. If the phase d
ference of the two neurons is initially given by a value, f
example, betweenU2 andS2, the effective coupling is posi
tive. This implies that the phase difference becomes lar
by Eq. ~6! until it hits S2. By the same argument, the initia
difference at a value betweenS2 andU3 is attracted toS2.
Therefore, the unstable points play the role of a separa
For example, if the phase difference between the two n
rons is initially given by the value between two unstab
fixed points, it is gradually attracted to the stable fixed po
which is located between the two unstable fixed points.

Six phase locking patterns whenK50.001 are explicitly
presented in Fig. 4; each corresponds to one of the st
fixed points in Fig. 3. To check the validity of the effectiv
coupling method, we simulate the changing rate of ph
difference versus the initial phase difference, which is pl
ted in Fig. 5. For the simulations, we observed the ph
difference after the 20 periods of the oscillators, and divid
it by the time duration of 20 periods. This simulated res
shows that the effective coupling method correctly predi
the multistability of limit cycle oscillator systems even whe
the system is at complicated activities such as bursting.
difference between the theoretical effective coupling and
simulated one becomes smaller as the coupling beco
smaller. At theK˜0 limit, the simulated result is expecte
to coincide with the theoretical one@13#.

V. SUMMARY AND DISCUSSIONS

We have shown that diffusively coupled neuronal oscil
tors exhibit various rhythmic phase locking patterns. Assu
ing weak coupling, we have analyzed the effective coupl
on the limit cycle of a coupled HR model with two neuron
The model has been shown to exhibit stable activity patte
coexisting at fixed parameter values. The system is eve
ally stabilized in one of the coexisting patterns which cor
spond to one of the stable fixed points of the effective c
pling according to the initial conditions. The stabilize
pattern is reformed to another by a slight transient input a
fixed parameter. This corresponds to the mode-switch
mechanism which changes the electrical properties of
system with fixed parameters.

We calculated the effective coupling for various values
the external current,I, andr. In general, as the spike numbe
is increased, the effective coupling receives more ‘‘burst
and the number of stable fixed points is increased. It c
therefore, be suggested that dephasing due to the defo
tion of phase flow on the limit cycle results in multistab
phase locking patterns, whose analysis is deferred for fur
study. The microscopic analysis in this paper may provid
clue to understanding various collective behaviors of a la
network system which should be studied systematically
the future.

The rhythmic activities of oscillatory networks, such
the swimming and heartbeat of invertebrates, has b
widely understood via the post-inhibitory rebound mech

ds
s



-
ib
th

ev
er

up-

d

PRE 60 2181MULTISTABILITY ANALYSIS OF PHASE LOCKING . . .
nism @14–16#. Here an alternating pattern of activity is pro
duced through post-inhibitory rebound between the inh
tory coupled neurons or groups of neurons. Adjusting
external current value or the coupling strength of Eq.~2!, we
observed various dynamic patterns: in-phase~antiphase!
locking patterns both on the spiking and on the bursting l
els. Our results, therefore, suggest another route to gen
J

ce
i-
e

-
at-

ing the rhythmic patterns, which, however, should be s
ported by the physiological facts.
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